2024-02 BME444

   

 BME444: Artificial Neural Systems


Announcement:
- 10th Jan 2024 : Class started 


Course syllabus:
BME444 Course Syllabus


Learning preparation:
- none

Assessment:
- Midterm exam 25 marks
- Final exam 20 marks
- Miniproject1 30 marks
- Miniproject2 25 marks

Course resources:
- Ebooks: main+codeadditional1additional2main in part deep learning
Matlab Essential Commands and Learning preparation
Chapter00: Course Syllabus
** Showcase MNIST

Chapter01: Neuron Model and Network Architecture
  Problem1.1Problem1.2Problem1.3
Chapter02: Learning Methods for Single-layer Neural Network
  Problem2.0Problem2.0_sgd, delta.py , delta.m, delta_batch.m,  Problem2.1Problem2.2Problem2.3Python for training perceptron 
Chapter03: Learning Methods for Multiple-layer Neural Network
  Problem3.1/1Problem3.1/2 (Batch), Problem3.1/3 , Problem3.1 Test scriptProblem3.2 , Problem3.3 , Problem3.4


  Tool for forward computing ANN
Chapter04: Case Studies
  o Case1 : Ball Position (Data inputTraining data)
  o Case2 : Classification by ECG (Data inputTraining data)
Chapter05 : Neuron Network in Practical Development
Class06: Deep Learning
  o Example of model structure: model images
  o MNIST (trainingtestingdatabasepretrained model) (more information mnist) (Update code) testTraining data picture: 259 
  o pima-indians-diabetes (training and testingdatabasedatabase description)
  o cifar10 (training and testingpretrained database)


Assignments:
Instruction 


Marks:
- TBA


Last update:9th Jan 2024 20.46



Popular posts from this blog